Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Lyndsey K. Ritchie and William T. A. Harrison*

Department of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland

Correspondence e-mail:
w.harrison@abdn.ac.uk

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{Se}-\mathrm{O})=0.002 \AA$
R factor $=0.031$
$w R$ factor $=0.078$
Data-to-parameter ratio $=25.9$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

1-Carbamoylguanidinium hydrogenselenite

The title compound, $\mathrm{C}_{2} \mathrm{H}_{7} \mathrm{~N}_{4} \mathrm{O}^{+} \cdot \mathrm{HSeO}_{3}{ }^{-}$, contains a network of 1-carbamoylguanidinium cations and hydrogenselenite anions. The crystal packing is controlled by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ $\left[d_{\mathrm{av}}(\mathrm{H} \cdots \mathrm{O})=1.89 \AA, \theta_{\mathrm{av}}(\mathrm{N}-\mathrm{H} \cdots \mathrm{O})=167^{\circ}\right.$ and $d_{\mathrm{av}}(\mathrm{N} \cdots \mathrm{O})$ $=2.760(1) \AA]$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}\left[d_{\mathrm{av}}(\mathrm{H} \cdots \mathrm{O})=1.86 \AA, \theta_{\mathrm{av}}(\mathrm{O}-\right.$ $\mathrm{H} \cdots \mathrm{O})=175^{\circ}$ and $d_{\mathrm{av}}(\mathrm{O} \cdots \mathrm{O})=2.712(1) \AA$] hydrogen bonds, resulting in a layered structure.

Comment

The title compound, $\left(\mathrm{C}_{2} \mathrm{H}_{7} \mathrm{~N}_{4} \mathrm{O}\right)\left(\mathrm{HSeO}_{3}\right)$, (I) (Fig. 1), contains a hydrogen-bonded network of $\left(\mathrm{C}_{2} \mathrm{H}_{7} \mathrm{~N}_{4} \mathrm{O}\right)^{+}$(1-carbamoylguanidinium or guanylurea) cations and hydrogenselenite anions. It complements simple salt-like guanylurea compounds, including $\left(\mathrm{C}_{2} \mathrm{H}_{7} \mathrm{~N}_{4} \mathrm{O}\right)\left(\mathrm{ClO}_{4}\right)$ (Begley et al., 1985), $\left(\mathrm{C}_{2} \mathrm{H}_{7} \mathrm{~N}_{4} \mathrm{O}\right)\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right)$ (Zaman \& Darlow, 1986), ($\mathrm{C}_{2} \mathrm{H}_{7^{-}}$ $\left.\mathrm{N}_{4} \mathrm{O}\right) \mathrm{Cl} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$ (Scoponi et al., 1991) and $\left(\mathrm{C}_{2} \mathrm{H}_{7} \mathrm{~N}_{4} \mathrm{O}\right)\left(\mathrm{CH}_{4}-\right.$ $\left.\mathrm{PO}_{3}\right) \cdot \mathrm{H}_{2} \mathrm{O}$ (Brauer \& Kottsieper, 2003).

In (I), the $\left(\mathrm{C}_{2} \mathrm{H}_{7} \mathrm{~N}_{4} \mathrm{O}\right)^{+}$cation has normal geometrical parameters (Begley et al., 1985), with $d_{\mathrm{av}}(\mathrm{N}-\mathrm{C})=1.343$ (3) \AA, indicating significant delocalization of electrons over the nonH -atom skeleton (Scoponi et al., 1991) and is almost planar (for the non-H atoms, the root-mean-square deviation from the least-squares plane $=0.031 \AA$). A non-linear $\left(\theta=129^{\circ}\right)$ intramolecular $\mathrm{N} 3-\mathrm{H} 5 \cdots \mathrm{O} 4$ hydrogen bond is present, which is typical for $\left(\mathrm{C}_{2} \mathrm{H}_{7} \mathrm{~N}_{4} \mathrm{O}\right)^{+}$(Bremner \& Harrison, 2002). The $\left(\mathrm{HSeO}_{3}\right)^{-}$hydrogenselenite group shows its standard (Verma, 1999) pyramidal geometry $\left[d_{\mathrm{av}}(\mathrm{Se}-\mathrm{O})=1.699\right.$ (2) \AA and $\left.\theta_{\mathrm{av}}(\mathrm{O}-\mathrm{Se}-\mathrm{O})=102.2(1)^{\circ}\right]$, with the protonated $\mathrm{Se}-\mathrm{O} 3$ vertex showing its expected lengthening relative to the other $\mathrm{Se}-\mathrm{O}$ bonds.

The component species in (I) interact by means of a network of $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (see Table 2 for symmetry codes). The guanylurea cations form hydrogen-bonded chains (via $\mathrm{N} 4-\mathrm{H} 7 \cdots \mathrm{O} 4^{\mathrm{v}}$ bonds) crosslinked by the hydrogenselenite groups to form hydrogenbonded layers (Fig. 2) in the (011) plane. There are various intermolecular hydrogen-bonding motifs including N $\mathrm{H} \cdots \mathrm{O}_{S}$, and bifurcated $\mathrm{N}-\mathrm{H} \cdots\left(\mathrm{O}_{S}, \mathrm{O}_{S}\right)$ and $\mathrm{N}-\mathrm{H} \cdots\left(\mathrm{O}_{S}, \mathrm{O}_{G}\right)$ ($S=$ selenite, $G=$ guanylurea) bonds. Based on the $\mathrm{H} \cdots \mathrm{O}$

Received 4 August 2003
Accepted 5 August 2003
Online 15 August 2003

Figure 1
The asymmetric unit of (I) (50\% displacement ellipsoids). H atoms are drawn as small spheres of arbitrary radius and hydrogen bonds are indicated by dashed lines.

Figure 2
Detail of a (011) hydrogen-bonded sheet in (I) with the selenite groups represented by $\mathrm{HSeO}_{3} \mathrm{E}$ pseudo-tetrahedra (dummy atom E placed $1.0 \AA$ from Se). Colour key: $\left[\mathrm{HSeO}_{3} \mathrm{E}\right]^{-}$groups pink, O atoms red, C atoms blue, N atoms green, H atoms grey, E dummy atoms light blue (all radii arbitrary). The $\mathrm{H} \cdots \mathrm{O}$ portion of the intramolecular hydrogen bond is highlighted in light blue. The $\mathrm{H} \cdots \mathrm{O}$ portions of the $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds with $1.90 \AA<d(\mathrm{H} \cdots \mathrm{O})<2.30 \AA$ and $2.30 \AA<d(\mathrm{H} \cdots \mathrm{O})<2.55 \AA$ are highlighted in yellow and orange, respectively. Symmetry labels as in Table 2.
separations, these $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ bonds vary in strength from fairly strong $(1.98 \AA$) to very weak $(2.53 \AA)$. Atoms O1 and O 2 accept three hydrogen bonds each, and atoms O 3 and O 4 accept two each.

The strong, short, inter-selenite $\mathrm{O} 3-\mathrm{H} 8 \cdots \mathrm{O} 2^{i}$ hydrogen bonds help to fuse the layers into double sheets (Fig. 3); when considered in isolation, pairs of $\left(\mathrm{HSeO}_{3}\right)^{-}$units form unusual, inversion-symmetry generated, dimers by way of two such bonds (Fig. 3). Pseudo- $\pi-\pi$-stacking interactions between adjacent guanylurea moieties $\left[d\left(\mathrm{~N} 2 \cdots \mathrm{C} 4^{\mathrm{i}}\right)=3.295(3) \AA\right.$ and $d\left(\mathrm{~N} 3 \cdots \mathrm{~N} 1^{\mathrm{i}}\right)=3.437(3) \AA$ may also provide some coherence

Figure 3
[010] projection of (I) showing the inter-selenite connectivity by way of hydrogen bonds. Colour key as in Fig. 1 and symmetry code as in Table 2. Guanylurea H atoms have been omitted for clarity.
between the layers. The double sheets stack normal to (011), with bonding between the double sheets controlled by van der Waals forces.

Experimental

5 ml of $0.1 \mathrm{M}{ }^{\prime} \mathrm{H}_{2} \mathrm{SeO}_{3}{ }^{\prime}$ (dissolved SeO_{2}) and 5 ml of $0.1 M$ cyanoguanidine $\left(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{~N}_{4}\right)$ were mixed, resulting in a clear solution. Rodand block-shaped crystals of (I) grew as the water evaporated over the course of a few days. The cyanoguanidine was transformed to guanylurea by slow acid hydrolysis.

Crystal data

$\mathrm{C}_{2} \mathrm{H}_{7} \mathrm{~N}_{4} \mathrm{O}^{+} \cdot \mathrm{HSeO}_{3}{ }^{-}$
$Z=2$
$M_{r}=231.08$
Triclinic, $P \overline{1}$
$a=6.7643$ (4) A
$b=7.9045$ (5) \AA
$c=8.2612$ (5) A
$\alpha=63.021(1)^{\circ}$
$\beta=81.414(1)^{\circ}$
$\gamma=72.200(1)^{\circ}$
$V=374.77(4) \AA^{3}$

Data collection

Bruker SMART1000 CCD
diffractometer
ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
$T_{\text {min }}=0.143, T_{\text {max }}=0.224$
3843 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.031$
$w R\left(F^{2}\right)=0.078$
$S=1.01$
2591 reflections
100 parameters
$D_{x}=2.048 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 2368 reflections
$\theta=2.8-32.5^{\circ}$
$\mu=4.99 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, colourless
$0.45 \times 0.35 \times 0.30 \mathrm{~mm}$

2591 independent reflections
2259 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.016$
$\theta_{\text {max }}=32.5^{\circ}$
$h=-10 \rightarrow 10$
$k=-11 \rightarrow 7$
$l=-12 \rightarrow 12$

H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0491 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=1.00 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.66 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters (A).

Se1-O1	$1.6523(15)$	N2-C1	$1.359(3)$
$\mathrm{Se} 1-\mathrm{O} 2$	$1.6807(16)$	$\mathrm{N} 2-\mathrm{C} 2$	$1.396(3)$
$\mathrm{Se} 1-\mathrm{O} 3$	$1.7626(17)$	$\mathrm{N} 3-\mathrm{C} 1$	$1.308(3)$
$\mathrm{O} 4-\mathrm{C} 2$	$1.227(3)$	$\mathrm{N} 4-\mathrm{C} 1$	$1.323(3)$
$\mathrm{N} 1-\mathrm{C} 2$	$1.328(3)$		

Table 2
Hydrogen-bonding geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 3-\mathrm{H} 8 \cdots \mathrm{O} 2^{\text {i }}$	0.98	1.71	2.685 (3)	173
$\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{O} 1^{\text {ii }}$	0.86	2.15	2.990 (3)	167
$\mathrm{N} 1-\mathrm{H} 2 \cdots \mathrm{O} 2$	0.86	2.06	2.903 (3)	165
N2-H3 . ${ }^{\text {O }} 1$	0.86	1.99	2.824 (2)	163
$\mathrm{N} 3-\mathrm{H} 4 \cdots \mathrm{O} 2^{\text {iii }}$	0.86	1.98	2.826 (2)	169
N3-H5 . ${ }^{\text {O }} 4$	0.86	2.02	2.646 (3)	129
$\mathrm{N} 3-\mathrm{H} 5 \cdots \mathrm{O}^{\text {iv }}$	0.86	2.48	3.132 (2)	133
$\mathrm{N} 4-\mathrm{H} 6 \cdots{ }^{\text {a }}{ }^{\text {iii }}$	0.86	2.53	3.372 (3)	165
$\mathrm{N} 4-\mathrm{H} 7 \cdots 4^{\mathrm{v}}$	0.86	2.23	2.774 (2)	122
N4-H7 . . O1	0.86	2.48	3.200 (3)	142

Atom H8 was found in a difference map and refined as riding, starting in its as-found position. H atoms bonded to nitrogen were
placed in calculated positions $[d(\mathrm{~N}-\mathrm{H})=0.86 \AA]$ and refined as riding. The constraint $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$ (parent atom) was applied in all cases.

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97; molecular graphics: ORTEP-3 (Farrugia, 1997) and ATOMS (Shape Software, 1999); software used to prepare material for publication: SHELXL97.

References

Begley, M. J., Hubberstey, P. \& Moore, C. H. M. (1985). J. Chem. Res. (S), pp. 380-381.
Brauer, D. J. \& Kottsieper, K. W. (2003). Acta Cryst. C59, o244-o246.
Bremner, C. A. \& Harrison, W. T. A. (2002). Acta Cryst. E58, m254-m256.
Bruker (1999). SMART (Version 5.624), SAINT-Plus (Version 6.02A) and $S A D A B S$. Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Scoponi, M., Polo, E., Bertolasi, V., Carassiti, V. \& Bertelli, G. (1991). J. Chem. Soc. Perkin Trans. 2, pp. 1619-1624.
Shape Software (1999). ATOMS. Shape Software, Kingsport, Tennessee, USA.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Verma, V. P. (1999). Thermochim. Acta, 327, 63-102.
Zaman, N. \& Darlow, S. F. (1986). J. Bangladesh Acad. Sci. 10, 79-84.

